Moment Analysis of Hadronic Vacuum Polarization Proposal for a lattice QCD evaluation of $g_{\mu} - 2$

Eduardo de Rafael

Centre de Physique Théorique CNRS-Luminy, Marseille

10th October 2014

FloratosFest2014 New Horizons in Particles, Strings and Membranes

E.G. Floratos, S. Narison, E. de Rafael, N.P. B155 (1979)115-149

Left-Right Correlation Function (VV-AA) in QCD

$$\Delta^{(1)}(q^2)_{i,j}$$
 Transverse Component
$$\Delta^{(0)}(q^2)_{i,j}$$
 Longitudinal Component

i and *j* are flavour indices and m_i and m_j quark masses.

First Weinberg Sum Rule Converges even with explicit breaking

$$\left[\Delta^{(1)}(q^2)_{i,j} + \Delta^{(0)}(q^2)_{i,j}\right]_{-q^2 \to \infty} = \frac{\alpha_s}{\pi} \frac{1}{\pi^2} \frac{m_i m_j}{q^2} + \frac{\alpha_s}{\pi} \mathcal{O}\left[\left(\frac{m^2}{q^2}\right)^2 \log \frac{m^2}{q^2}\right]$$

$a_{\mu}(\text{E821} - \text{BNL}) = 116\ 592\ 089(54)_{\text{stat}}(33)_{\text{syst}} \times 10^{-11}[0.54\text{ppm}]$

Future Experiments: FNAL with ± 0.14 ppm overall uncertainty JPARC with similar uncertainty but very different technique

Standard Model Contributions

J.P. Miller, E. de Rafael, B.L. Roberts, D. Stöckinger, Annu. Rev. Part. Nucl. Phys. '12

CONTRIBUTION	Result in 10 ⁻¹¹ units
QED (leptons)	116 584 718.85 \pm 0.04
HVP(lo)[e ⁺ e ⁻]	6 923 ± <mark>42</mark>
HVP(ho)	-98.4 ± 0.7
HLxL	105 ± <mark>26</mark>
EW	153 ± 1
Total SM	116 591 801 \pm 49

Persistent 3.6σ discrepancy between SM theory and Experiment

HVP Contribution to the Muon Anomaly

Muon Anomaly from HVP

Standard Formulation in terms of the Hadronic Spectral Function

$$\frac{1}{2}(g_{\mu}-2)_{\text{Hadrons}} \equiv a_{\mu}^{\text{HVP}} = \frac{\alpha}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \int_0^1 dx \frac{x^2(1-x)}{x^2 + \frac{t}{m_{\mu}^2}(1-x)} \frac{1}{\pi} \text{Im}\Pi(t)$$

where

$$\sigma(t)_{[e^+e^- o (\gamma) o ext{Hadrons}]} = rac{4\pi^2 lpha}{t} rac{1}{\pi} ext{Im} \Pi(t)$$

In lattice QCD it is necessary to go Euclidean

$$\Pi(Q^2) = \int_0^\infty \frac{dt}{t} \frac{-Q^2}{t+Q^2} \frac{1}{\pi} \operatorname{Im}\Pi(t), \quad \text{with euclidean} \quad Q^2 = \frac{x^2}{1-x} m_\mu^2.$$

HVP in Lattice QCD

$$\begin{aligned} \boldsymbol{a}_{\mu}^{\mathrm{HVP}} &= \frac{\alpha}{\pi} \int_{0}^{1} dx \, (1-x) \int_{0}^{\infty} \frac{dt}{t} \, \frac{\frac{x^{2}}{1-x} m_{\mu}^{2}}{t + \frac{x^{2}}{1-x} m_{\mu}^{2}} \, \frac{1}{\pi} \mathrm{Im} \Pi(t) \,, \\ \boldsymbol{a}_{\mu}^{\mathrm{HVP}} &= \frac{\alpha}{\pi} \int_{0}^{1} dx (1-x) \bigg[-\Pi \left(\frac{x^{2}}{1-x} m_{\mu}^{2} \right) \bigg] \,. \end{aligned}$$

Set
$$\omega = \frac{Q^2}{m_{\mu}^2} = \frac{x^2}{1-x}$$
,
 $a_{\mu}^{\text{HVP}} = \frac{\alpha}{\pi} \int_0^\infty \frac{d\omega}{\omega} \frac{1}{4} \left[(2+\omega) \left(2 + \omega - \sqrt{\omega}\sqrt{4+\omega} \right) - 2 \right] \left(-\omega \frac{d}{d\omega} \Pi \left(\omega m_{\mu}^2 \right) \right)$

$$\begin{aligned} \mathbf{a}_{\mu}^{\mathrm{HVP}} &= \frac{\alpha}{\pi} \int_{0}^{\infty} \frac{d\omega}{\omega} \frac{1}{4} \left[(2+\omega) \left(2+\omega - \sqrt{\omega}\sqrt{4+\omega} \right) - 2 \right] \left(-\omega \frac{d}{d\omega} \Pi \left(\omega m_{\mu}^{2} \right) \right) \\ G(\omega) &= \frac{1}{4} \left[(2+\omega) (2+\omega - \sqrt{\omega}\sqrt{4+\omega}) - 2 \right] \end{aligned}$$

So far, Lattice QCD evaluations need extrapolations with Models or Padé Approximants

Mellin-Barnes Integral Representation of a_{μ}^{HVP}

$$a_{\mu}^{\text{HVP}} = \left(\frac{\alpha}{\pi}\right) \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} ds \,\mathcal{F}(s) \,\underbrace{\mathcal{M}(s)}_{c-i\infty}, \qquad \text{Re } c \in]0, +1[$$
$$\mathcal{F}(s) = -\Gamma(3-2s)\Gamma(-3+s)\Gamma(1+s)$$
$$\mathcal{M}(s) = \underbrace{\int_{4m_{\pi}^{2}}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^{2}}{t}\right)^{1-s} \frac{1}{\pi} \text{Im}\Pi(t)}_{\text{Mellin Transform of the Spectral Function}}$$

Useful representation to extract the asymptotic expansion for $\frac{m_{\mu}^2}{t} < 1$.

Expansion in Moment Approximants

а

$$\begin{split} {}^{\mathrm{HVP}}_{\mu} &= \left(\frac{\alpha}{\pi}\right) \left\{ \frac{1}{3} \mathcal{M}(0) + \frac{25}{12} \mathcal{M}(-1) + \tilde{\mathcal{M}}(-1) \right. \\ &+ \left. \frac{97}{10} \mathcal{M}(-2) + 6 \tilde{\mathcal{M}}(-2) \right. \\ &+ \left. \frac{208}{5} \mathcal{M}(-3) + 28 \tilde{\mathcal{M}}(-3) + \mathcal{O}\left[\tilde{\mathcal{M}}(-4) \right] \right\} \end{split}$$

Two types of Moments

Normal Moments:

$$\mathcal{M}(-n) = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^2}{t}\right)^{1+n} \frac{1}{\pi} \mathrm{Im}\Pi(t), \quad n = 0, 1, 2, \dots$$

Log weighted Moments:

$$\tilde{\mathcal{M}}(-n) = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^2}{t}\right)^{1+n} \log \frac{m_{\mu}^2}{t} \frac{1}{\pi} \mathrm{Im}\Pi(t), \quad n = 1, 2, 3, \cdots$$

$$a_{\mu}^{\rm HVP}(e^+e^-) = (6.923 \pm 0.042) \times 10^{-8}$$
 (0.6%)

M. Davier et al' 10

$$a_{\mu}^{\rm HVP}$$
(toy model) = 6.936 × 10⁻⁸

D. Bernecker and H.B. Meyer, '11; L. Lelllouch, '14

Numerical Values of the Moment Approximants (Toy Model)

$$\left(\frac{\alpha}{\pi}\right)\frac{1}{3}\mathcal{M}(0) = 8.071 \times 10^{-8} \quad (16\%)$$
$$\left(\frac{\alpha}{\pi}\right)\left[\frac{1}{3}\mathcal{M}(0) + \frac{25}{12}\mathcal{M}(-1) + \tilde{\mathcal{M}}(-1)\right] = 7.240 \times 10^{-8} \quad (4\%)$$
$$\left(\frac{\alpha}{\pi}\right)\left[\frac{1}{3}\mathcal{M}(0) + \frac{25}{12}\mathcal{M}(-1) + \tilde{\mathcal{M}}(-1) + \frac{97}{10}\mathcal{M}(-2) + 6\tilde{\mathcal{M}}(-2)\right] = 7.022 \times 10^{-8} \quad (1\%)$$

Fourth Approximation is already within 0.4% of toy model result

The Moment Approximants in Lattice QCD

The Leading Moment is a rigorous upper bound

J.S. Bell-de Rafael '69

$$a_{\mu}^{\mathrm{HVP}} < \left(\frac{\alpha}{\pi}\right) \frac{1}{3} \underbrace{\int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \frac{m_{\mu}^2}{t} \frac{1}{\pi} \mathrm{Im}\Pi(t)}_{\mathcal{M}(0)} = \left(\frac{\alpha}{\pi}\right) \frac{1}{3} \underbrace{\left(-m_{\mu}^2 \frac{d}{dQ^2} \Pi(Q^2)\right)_{Q^2=0}}_{\mathrm{Lattice QCD}}$$

- Overestimates $a_{\mu}^{\rm HVP}$ by less than 20% (not bad for a rigorous bound)
- The slope of $\Pi \left(Q^2 \right)$ at the origin (r.h.s.) can be evaluated in lattice QCD
- It is difficult to imagine that, unless lattice QCD does better than phenomenology in this simple case, it will ever reach a competitive accuracy of the full determination of a^{HVP}_µ.

 $\mathcal{M}(-n)$ Moments correspond to successive derivatives of $\Pi(Q^2)$ at $Q^2 = 0$

$$\underbrace{\mathcal{M}(-n)}_{n=0,1,2...} = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^2}{t}\right)^{1+n} \frac{1}{\pi} \mathrm{Im}\Pi(t) = \frac{(-1)^{n+1}}{(n+1)!} (m_{\mu}^2)^{n+1} \left(\frac{\partial^{n+1}}{(\partial Q^2)^{n+1}} \Pi(Q^2)\right)_{Q^2=0}$$

These derivatives can be determined in Lattice QCD

The Log Weighted Moments in Lattice QCD

$$\tilde{\mathcal{M}}(-n) = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^2}{t}\right)^n \log \frac{m_{\mu}^2}{t} \frac{1}{\pi} \mathrm{Im}\Pi(t)$$

They require the evaluation of integrals of the type

Integrals in the Euclidean to be evaluated in lattice QCD

$$\Sigma(-n) \equiv \int_{4m_\pi^2}^{\infty} dQ^2 \left(\frac{m_\mu^2}{Q^2}\right)^{n+1} \left(-\frac{\Pi(Q^2)}{Q^2}\right) \quad n = 1, 2, 3 \dots$$

Example:

$$\tilde{\mathcal{M}}(-1) = -\log \frac{4m_{\pi}^2}{m_{\mu}^2} \underbrace{\mathcal{M}}_{\text{Lat. QCD}} + \underbrace{\Sigma(-1)}_{\text{Lat. QCD}} - \frac{m_{\mu}^2}{4m_{\pi}^2} \underbrace{\mathcal{M}}_{\text{Lat. QCD}} + \mathcal{O}\left[\mathcal{M}(-2)\right]$$

- Contrary to the evaluation of a^{HVP}_μ, the Euclidean moments Σ(-1), Σ(-2), ... are not weighted by a heavily peaked kernel at small Q².
- The threshold of integration is at a rather large value $Q^2 = 4m_{\pi}^2$ instead of zero.
- The determination of these Euclidean moments in lattice QCD and their comparison with the corresponding phenomenological expressions in terms of the hadronic spectral function, provide valuable further tests.

Successive Aproximations to a_{μ}^{HVP} (phen. model) = 6.936×10^{-8}

Quantities to be evaluated in lattice QCD

 $\underbrace{\mathcal{M}(0)}_{10.424}; \quad \underbrace{\Sigma(-1)}_{1.223}, \quad \underbrace{\mathcal{M}(-1)}_{0.278}; \quad \underbrace{\Sigma(-2)}_{0.113}, \quad \underbrace{\mathcal{M}(-2)}_{0.012} \quad \text{and} \quad \underbrace{\mathcal{M}(-3)}_{0.001}$

Final Results (numbers are those from the Phenomenological Toy Model)

• 1st Approximation (same as Bell-de Rafael):

$$\left(\frac{\alpha}{\pi}\right)\frac{1}{3}\mathcal{M}(0) = 8.071 \times 10^{-8}$$

2nd Approximation

$$\left(\frac{\alpha}{\pi}\right) \left\{ \left(\frac{1}{3} - \frac{m_{\mu}^2}{4m_{\pi}^2}\right) \mathcal{M}(0) + \left(\frac{25}{12} - \log\frac{4m_{\pi}^2}{m_{\mu}^2}\right) \mathcal{M}(-1) + \Sigma(-1) + \frac{4m_{\pi}^2}{m_{\mu}^2} \mathcal{M}(-2) \right\}$$

= 7.265(34) × 10⁻⁸

3rd Approximation

$$\begin{pmatrix} \frac{\alpha}{\pi} \end{pmatrix} \left\{ \left(\frac{1}{3} - \frac{m_{\mu}^2}{4m_{\pi}^2} + 3\left(\frac{m_{\mu}^2}{4m_{\pi}^2}\right)^2 \right) \mathcal{M}(0) + \left(\frac{25}{12} - \log\frac{4m_{\pi}^2}{m_{\mu}^2} - 6\frac{m_{\mu}^2}{4m_{\pi}^2}\right) \mathcal{M}(-1) \right. \\ \left. + \left(\frac{97}{10} - 6\log\frac{4m_{\pi}^2}{m_{\mu}^2} + \frac{4m_{\pi}^2}{m_{\mu}^2}\right) \mathcal{M}(-2) + \Sigma(-1) - 6\Sigma(-2) + \frac{4m_{\pi}^2}{m_{\mu}^2} \left(6 - \frac{1}{2}\frac{4m_{\pi}^2}{m_{\mu}^2}\right) \mathcal{M}(-3) \right\} \\ = 7.027(6) \times 10^{-8} \, .$$

The *moment analysis* approach may gradually lead to an accurate determination of a_{μ}^{HVP} , providing at the same time many tests of *lattice QCD evaluations* to be confronted with phenomenological determinations using experimental data.

Dear Manolis

Welcome to the club of Active Retired Theorists!

The *moment analysis* approach may gradually lead to an accurate determination of a_{μ}^{HVP} , providing at the same time many tests of *lattice QCD evaluations* to be confronted with phenomenological determinations using experimental data.

Dear Manolis

Welcome to the club of Active Retired Theorists!

Expansion in terms of Moments

$$a_{\mu}^{\mathrm{HVP}} = \left(\frac{\alpha}{\pi}\right) \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} ds \ \mathcal{F}(s) \ \underbrace{\mathcal{M}(s)}_{s}, \qquad \mathrm{Re} \ c \in]0, +1[$$
$$\mathcal{F}(s) = -\Gamma(3-2s)\Gamma(-3+s)\Gamma(1+s) \quad \mathrm{and} \quad \underbrace{\mathcal{M}(s) = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^2}{t}\right)^{1-s} \frac{1}{\pi} \mathrm{Im}\Pi(t)}_{s}$$

Mellin Transform of Spectral Function

 $\mathcal{M}(s)$ in QCD is finite for s < 1 and singular at s = 1 (with known residue from pQCD)

Singular expansion of $\mathcal{F}(s)$:

$$\mathcal{F}(s) \asymp \frac{1}{3} \frac{1}{s} - \frac{1}{(s+1)^2} + \frac{25}{12} \frac{1}{s+1} - \frac{6}{(s+2)^2} + \frac{97}{10} \frac{1}{s+2} - \frac{28}{(s+3)^2} + \frac{208}{5} \frac{1}{s+3} + \cdots$$

Phenomenological Toy Model

D. Bernecker and H.B. Meyer, '11; L. Lelllouch, '14

• The most recent experimental determination from e^+e^- data:

$$a_{\mu}^{
m HVP} = (6.923 \pm 0.042) imes 10^{-8}$$

• This phenomenological parametrization:

$$a_{\mu}^{
m HVP} = 6.936 imes 10^{-8}$$
 .

Mellin Transform in the Phenomenological Toy Model

The Mellin Transform of $\frac{1}{\pi}$ Im $\Pi(t)$ is a Monotonously Decreasing Function

EdeR Hadronic HVP Moments

Mellin Transform and Derivative of Mellin Transform in Toy Model

$$\mathcal{M}(s) = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^2}{t}\right)^{1-s} \frac{1}{\pi} \mathrm{Im}\Pi(t), \quad \tilde{\mathcal{M}}(s) = -\frac{d}{ds} \mathcal{M}(s) = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^2}{t}\right)^{1-s} \log \frac{m_{\mu}^2}{t} \frac{1}{\pi} \mathrm{Im}\Pi(t)$$

Both Mellin Transforms of $\frac{1}{\pi}$ Im $\Pi(t)$ are decreasing smooth Functions

The Log Weighted Moments in Lattice QCD

First do a change of scale:

$$\tilde{\mathcal{M}}(-n) = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^2}{t}\right)^n \log \frac{m_{\mu}^2}{t} \frac{1}{\pi} \operatorname{Im}\Pi(t)$$
$$\tilde{\mathcal{M}}(-n) = -\log \frac{4m_{\pi}^2}{m_{\mu}^2} \mathcal{M}(-n) + \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^2}{t}\right)^n \log \frac{4m_{\pi}^2}{t} \frac{1}{\pi} \operatorname{Im}\Pi(t)$$

Construct the Euclidean Integral $\Sigma(-1)$

$$\Sigma(-1) \equiv \underbrace{\int_{4m_{\pi}^2}^{\infty} dQ^2 \left(\frac{m_{\mu}^2}{Q^2}\right)^2 \left(-\frac{\Pi(Q^2)}{Q^2}\right)}_{\text{Lattice QCD}} = \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^2}{t}\right)^2 \log \frac{4m_{\pi}^2}{t} \frac{1}{\pi} \text{Im}\Pi(t) + \frac{m_{\mu}^2}{4m_{\pi}^2} \mathcal{M}(0) - \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^2}{t}\right)^2 \log \left(1 + \frac{4m_{\pi}^2}{t}\right) \frac{1}{\pi} \text{Im}\Pi(t)$$

Notice the relation:

$$\tilde{\mathcal{M}}(-1) = -\log \frac{4m_{\pi}^2}{m_{\mu}^2} \mathcal{M}(-1) + \underbrace{\Sigma(-1)}_{\text{Latt. QCD}} - \frac{m_{\mu}^2}{4m_{\pi}^2} \mathcal{M}(0) + \frac{4m_{\pi}^2}{m_{\mu}^2} \mathcal{M}(-2) + \cdots$$

Construct Next the Euclidean Integral $\Sigma(-2)$ (with one more $\frac{m_{\mu}^2}{Q^2}$ power)

$$\Sigma(-2) \equiv \underbrace{\int_{4m_{\pi}^{2}}^{\infty} dQ^{2} \left(\frac{m_{\mu}^{2}}{Q^{2}}\right)^{3} \left(-\frac{\Pi(Q^{2})}{Q^{2}}\right)}_{\text{Lattice QCD}} = -\int_{4m_{\pi}^{2}}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^{2}}{t}\right)^{3} \log \frac{4m_{\pi}^{2}}{t} \frac{1}{\pi} \text{Im}\Pi(t) + \frac{1}{2} \left(\frac{m_{\mu}^{2}}{4m_{\pi}^{2}}\right)^{2} \mathcal{M}(0) - \frac{m_{\mu}^{2}}{4m_{\pi}^{2}} \mathcal{M}(-1) + \int_{4m_{\pi}^{2}}^{\infty} \frac{dt}{t} \left(\frac{m_{\mu}^{2}}{t}\right)^{3} \log \left(1 + \frac{4m_{\pi}^{2}}{t}\right) \frac{1}{\pi} \text{Im}\Pi(t)$$

The relation to the wanted $\tilde{\mathcal{M}}(-2)$ is then:

$$\tilde{\mathcal{M}}(-2) = -\log \frac{4m_{\pi}^2}{m_{\mu}^2} \mathcal{M}(-2) - \underbrace{\Sigma(-2)}_{\text{Latt. QCD}} + \frac{1}{2} \left(\frac{m_{\mu}^2}{4m_{\pi}^2}\right)^2 \mathcal{M}(0) - \frac{m_{\mu}^2}{4m_{\pi}^2} \mathcal{M}(-1) + \frac{4m_{\pi}^2}{m_{\mu}^2} \mathcal{M}(-3) + \cdots$$

COMMENTS ON THE HLbyLS CONTRIBUTION

HLbyLS Contribution to the Muon Anomaly in Chiral Limit with $M \to \infty$

$$\mathbf{a}_{\mu}^{(\text{HLbyLS})} = \underbrace{\left(\frac{\alpha}{\pi}\right)^{3} \text{N}_{c}^{2} \frac{m_{\mu}^{2}}{16\pi^{2} f_{\pi}^{2}} \left[\frac{1}{3} \ln^{2} \frac{M}{m_{\pi}} + \mathcal{O}\left(\ln \frac{M}{m_{\pi}}\right) + \mathcal{O}(1)\right]}_{\textbf{Knecht} - \textbf{Nyffeler} - Perrottet - de Rafael'02} + \left(\frac{\alpha}{\pi}\right)^{3} \text{N}_{c} \mathcal{O}\left(\frac{m_{\mu}^{2}}{M^{2}}\right)$$

- Clearly, in this limit, the $\ln^2 \frac{M}{m_{\pi}}$ term dominates.
- Once m²_µ factored out, -as it should- the pion mass becomes an infrared cut-off.
- However, m_{π} finite (and not much larger than m_{μ}). Also $M \simeq M_{\rho}$ (not large enough).
- Therefore, in practice one has to worry about $O\left(\frac{m_{\mu}^2}{m_{\pi}^2}\right)$ corrections and,

because of the *physical hadronic spectrum and couplings*, the $\ln^2 \frac{M_p}{m_{\pi}}$ dominance becomes questionable.

 Also, subleading corrections in 1/N_c (*pion-loop contribution*) may become relevant.