BIG ANSWERS FROM SMALL EXPERIMENTS

Savas Dimopoulos Stanford University

BIG ANSWERS FROM SMALL EXPERIMENTS

80% of the energy scale left to explore Dark Matter, Strong CP, String theory suggests there is more

Why Small?

Why Small?

Precision Frontier

Why Small?

• Experimental

Precision Frontier

Time and Money

The Low Energy Frontier

- In the Standard Model
 - Gravitons
 - Cosmic Neutrinos

- In String Theory
 - Axion(s) Also DM and Strong CP!
 - Photons kinetically mixing with our photon $\epsilon F^{EM}_{\mu\nu}F^{\mu\nu'}$
 - Dilaton, moduli, new dimensions

Optically Levitated Objects

- •Short Range Forces
- •Gravitational Wave detection
- at high frequencies
- •Tests of Quantum Mechanics

•Axion Field

Detection

- Equivalence principle at 15
- decimals
- •Gravitational Wave
- detection at low frequencies
- •EDM searches
- •Tests of Atom Neutrality at 30 decimals

- •Short Distance Tests of Gravity
- •Extra Dimensions

Optically Levitated Objects

- •Short Range Forces
- •Gravitational Wave detection
- at high frequencies
- •Tests of Quantum Mechanics

•Axion Field

Detection

- Equivalence principle at 15
- decimals
- •Gravitational Wave
- detection at low frequencies
- •EDM searches
- •Tests of Atom Neutrality at 30 decimals

- •Short Distance Tests of Gravity
- •Extra Dimensions

Light vs Atom Interferometry

LIGHT

accuracy of measurement

$$\frac{\delta L}{L} \approx \frac{\lambda}{L} \times \text{ phase resolution}$$

ATOMS

For atoms T~ 1 sec

 \Rightarrow L= cT ~ Earth-Moon distance!

10 m Atom Interferometer (2013)

Hogan, Kasevich et. al.

STANFORD UNIVERSITY

Testing Gravity at Large Distances

SD, Graham, Hogan, Kasevich

2006

An atom interferometer is a precision accelerometer

• Tests of the equivalence principle

Galileo $\sim g$

Future $\sim 10^{-17}g$

Tests of General Relativity

Gravitational Wave Detection with Atom Interferometry

SD, Graham, Hogan, Kasevich, Rajendran

 $\begin{array}{l} L \sim 1000 \ \text{km} \\ \text{Physical Distances between atoms oscillate with the GW amplitude:} \\ L=Lo(1+h\,\cos(\omega\,t)) \end{array}$

 Currently funded by NASA NIAC grant (NASA Innovative Advanced Concepts)

• MIGA - Philip Bouyer: Ground based GW detector in Bordeaux

Projected Sensitivity in Space

Precision Magnetometry

Nuclear Magnetic Resonance

Scattered Experiments

Optically Levitated Objects

Scattered Experiments

×

Scattered Experiments

Do They Need a Home?

Super-Lab for Fundamental Physics?

 Super-Lab: A Laboratory housing ≥ 20 small scale experiments on fundamental physics

• Fundamental Physics: New Forces, New Particles, New Dimensions, New phenomena...

- ANY Experimental Technique
- HEP Model of a Users Facility plus Local Personnel

Super-Lab for Fundamental Physics?

Ideas' Incubator Shared Lab Resources

• Sociological Opportunities

Private funding can have big impact New vision for investing public resources

Length Scales in the Universe

There are more things in heaven and earth, Horatio,Than are dreamt of in your philosophy.Hamlet